Gemini - Google AI Studio
| Property | Details |
|---|---|
| Description | Google AI Studio is a fully-managed AI development platform for building and using generative AI. |
| Provider Route on LiteLLM | gemini/ |
| Provider Doc | Google AI Studio ↗ |
| API Endpoint for Provider | https://generativelanguage.googleapis.com |
| Supported OpenAI Endpoints | /chat/completions, /embeddings, /completions, /videos, /images/edits |
| Pass-through Endpoint | Supported |
API Keys​
import os
os.environ["GEMINI_API_KEY"] = "your-api-key"
Sample Usage​
from litellm import completion
import os
os.environ['GEMINI_API_KEY'] = ""
response = completion(
model="gemini/gemini-pro",
messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}]
)
Supported OpenAI Params​
- temperature
- top_p
- max_tokens
- max_completion_tokens
- stream
- tools
- tool_choice
- functions
- response_format
- n
- stop
- logprobs
- frequency_penalty
- modalities
- reasoning_content
- audio (for TTS models only)
Anthropic Params
- thinking (used to set max budget tokens across anthropic/gemini models)
Usage - Thinking / reasoning_content​
LiteLLM translates OpenAI's reasoning_effort to Gemini's thinking parameter. Code
Cost Optimization: Use reasoning_effort="none" (OpenAI standard) for significant cost savings - up to 96% cheaper. Google's docs
Note: Reasoning cannot be turned off on Gemini 2.5 Pro models.
For Gemini 3+ models (e.g., gemini-3-pro-preview), LiteLLM automatically maps reasoning_effort to the new thinking_level parameter instead of thinking_budget. The thinking_level parameter uses "low" or "high" values for better control over reasoning depth.
Mapping for Gemini 2.5 and earlier models
| reasoning_effort | thinking | Notes |
|---|---|---|
| "none" | "budget_tokens": 0, "includeThoughts": false | 💰 Recommended for cost optimization - OpenAI-compatible, always 0 |
| "disable" | "budget_tokens": DEFAULT (0), "includeThoughts": false | LiteLLM-specific, configurable via env var |
| "low" | "budget_tokens": 1024 | |
| "medium" | "budget_tokens": 2048 | |
| "high" | "budget_tokens": 4096 |
Mapping for Gemini 3+ models
| reasoning_effort | thinking_level | Notes |
|---|---|---|
| "minimal" | "low" | Minimizes latency and cost |
| "low" | "low" | Best for simple instruction following or chat |
| "medium" | "high" | Maps to high (medium not yet available) |
| "high" | "high" | Maximizes reasoning depth |
| "disable" | "low" | Cannot fully disable thinking in Gemini 3 |
| "none" | "low" | Cannot fully disable thinking in Gemini 3 |
- SDK
- PROXY
from litellm import completion
# Cost-optimized: Use reasoning_effort="none" for best pricing
resp = completion(
model="gemini/gemini-2.0-flash-thinking-exp-01-21",
messages=[{"role": "user", "content": "What is the capital of France?"}],
reasoning_effort="none", # Up to 96% cheaper!
)
# Or use other levels: "low", "medium", "high"
resp = completion(
model="gemini/gemini-2.5-flash-preview-04-17",
messages=[{"role": "user", "content": "What is the capital of France?"}],
reasoning_effort="low",
)
- Setup config.yaml
- model_name: gemini-2.5-flash
litellm_params:
model: gemini/gemini-2.5-flash-preview-04-17
api_key: os.environ/GEMINI_API_KEY
- Start proxy
litellm --config /path/to/config.yaml
- Test it!
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-d '{
"model": "gemini-2.5-flash",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"reasoning_effort": "low"
}'
Gemini 3+ Models - thinking_level Parameter​
For Gemini 3+ models (e.g., gemini-3-pro-preview), you can use the new thinking_level parameter directly:
- SDK
- PROXY
from litellm import completion
# Use thinking_level for Gemini 3 models
resp = completion(
model="gemini/gemini-3-pro-preview",
messages=[{"role": "user", "content": "Solve this complex math problem step by step."}],
reasoning_effort="high", # Options: "low" or "high"
)
# Low thinking level for faster, simpler tasks
resp = completion(
model="gemini/gemini-3-pro-preview",
messages=[{"role": "user", "content": "What is the weather today?"}],
reasoning_effort="low", # Minimizes latency and cost
)
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-d '{
"model": "gemini-3-pro-preview",
"messages": [{"role": "user", "content": "Solve this complex problem."}],
"reasoning_effort": "high"
}'
Temperature Recommendation for Gemini 3 Models
For Gemini 3 models, LiteLLM defaults temperature to 1.0 and strongly recommends keeping it at this default. Setting temperature < 1.0 can cause:
- Infinite loops
- Degraded reasoning performance
- Failure on complex tasks
LiteLLM will automatically set temperature=1.0 if not specified for Gemini 3+ models.
Expected Response
ModelResponse(
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
created=1740470510,
model='claude-3-7-sonnet-20250219',
object='chat.completion',
system_fingerprint=None,
choices=[
Choices(
finish_reason='stop',
index=0,
message=Message(
content="The capital of France is Paris.",
role='assistant',
tool_calls=None,
function_call=None,
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
),
)
],
usage=Usage(
completion_tokens=68,
prompt_tokens=42,
total_tokens=110,
completion_tokens_details=None,
prompt_tokens_details=PromptTokensDetailsWrapper(
audio_tokens=None,
cached_tokens=0,
text_tokens=None,
image_tokens=None
),
cache_creation_input_tokens=0,
cache_read_input_tokens=0
)
)
Pass thinking to Gemini models​
You can also pass the thinking parameter to Gemini models.
This is translated to Gemini's thinkingConfig parameter.
- SDK
- PROXY
response = litellm.completion(
model="gemini/gemini-2.5-flash-preview-04-17",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
)
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "gemini/gemini-2.5-flash-preview-04-17",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024}
}'
Text-to-Speech (TTS) Audio Output​
LiteLLM supports Gemini TTS models that can generate audio responses using the OpenAI-compatible audio parameter format.
Supported Models​
LiteLLM supports Gemini TTS models with audio capabilities (e.g. gemini-2.5-flash-preview-tts and gemini-2.5-pro-preview-tts). For the complete list of available TTS models and voices, see the official Gemini TTS documentation.
Limitations​
Important Limitations:
- Gemini TTS models only support the
pcm16audio format - Streaming support has not been added to TTS models yet
- The
modalitiesparameter must be set to['audio']for TTS requests
Quick Start​
- SDK
- PROXY
from litellm import completion
import os
os.environ['GEMINI_API_KEY'] = "your-api-key"
response = completion(
model="gemini/gemini-2.5-flash-preview-tts",
messages=[{"role": "user", "content": "Say hello in a friendly voice"}],
modalities=["audio"], # Required for TTS models
audio={
"voice": "Kore",
"format": "pcm16" # Required: must be "pcm16"
}
)
print(response)
- Setup config.yaml
model_list:
- model_name: gemini-tts-flash
litellm_params:
model: gemini/gemini-2.5-flash-preview-tts
api_key: os.environ/GEMINI_API_KEY
- model_name: gemini-tts-pro
litellm_params:
model: gemini/gemini-2.5-pro-preview-tts
api_key: os.environ/GEMINI_API_KEY
- Start proxy
litellm --config /path/to/config.yaml
- Make TTS request
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-d '{
"model": "gemini-tts-flash",
"messages": [{"role": "user", "content": "Say hello in a friendly voice"}],
"modalities": ["audio"],
"audio": {
"voice": "Kore",
"format": "pcm16"
}
}'
Advanced Usage​
You can combine TTS with other Gemini features:
response = completion(
model="gemini/gemini-2.5-pro-preview-tts",
messages=[
{"role": "system", "content": "You are a helpful assistant that speaks clearly."},
{"role": "user", "content": "Explain quantum computing in simple terms"}
],
modalities=["audio"],
audio={
"voice": "Charon",
"format": "pcm16"
},
temperature=0.7,
max_tokens=150
)
For more information about Gemini's TTS capabilities and available voices, see the official Gemini TTS documentation.
Passing Gemini Specific Params​
Response schema​
LiteLLM supports sending response_schema as a param for Gemini-1.5-Pro on Google AI Studio.
Response Schema
- SDK
- PROXY
from litellm import completion
import json
import os
os.environ['GEMINI_API_KEY'] = ""
messages = [
{
"role": "user",
"content": "List 5 popular cookie recipes."
}
]
response_schema = {
"type": "array",
"items": {
"type": "object",
"properties": {
"recipe_name": {
"type": "string",
},
},
"required": ["recipe_name"],
},
}
completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format={"type": "json_object", "response_schema": response_schema} # 👈 KEY CHANGE
)
print(json.loads(completion.choices[0].message.content))
- Add model to config.yaml
model_list:
- model_name: gemini-pro
litellm_params:
model: gemini/gemini-1.5-pro
api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "List 5 popular cookie recipes."}
],
"response_format": {"type": "json_object", "response_schema": {
"type": "array",
"items": {
"type": "object",
"properties": {
"recipe_name": {
"type": "string",
},
},
"required": ["recipe_name"],
},
}}
}
'
Validate Schema
To validate the response_schema, set enforce_validation: true.
- SDK
- PROXY
from litellm import completion, JSONSchemaValidationError
try:
completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format={
"type": "json_object",
"response_schema": response_schema,
"enforce_validation": true # 👈 KEY CHANGE
}
)
except JSONSchemaValidationError as e:
print("Raw Response: {}".format(e.raw_response))
raise e
- Add model to config.yaml
model_list:
- model_name: gemini-pro
litellm_params:
model: gemini/gemini-1.5-pro
api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "List 5 popular cookie recipes."}
],
"response_format": {"type": "json_object", "response_schema": {
"type": "array",
"items": {
"type": "object",
"properties": {
"recipe_name": {
"type": "string",
},
},
"required": ["recipe_name"],
},
},
"enforce_validation": true
}
}
'
LiteLLM will validate the response against the schema, and raise a JSONSchemaValidationError if the response does not match the schema.
JSONSchemaValidationError inherits from openai.APIError
Access the raw response with e.raw_response
GenerationConfig Params​
To pass additional GenerationConfig params - e.g. topK, just pass it in the request body of the call, and LiteLLM will pass it straight through as a key-value pair in the request body.
See Gemini GenerationConfigParams
- SDK
- PROXY
from litellm import completion
import json
import os
os.environ['GEMINI_API_KEY'] = ""
messages = [
{
"role": "user",
"content": "List 5 popular cookie recipes."
}
]
completion(
model="gemini/gemini-1.5-pro",
messages=messages,
topK=1 # 👈 KEY CHANGE
)
print(json.loads(completion.choices[0].message.content))
- Add model to config.yaml
model_list:
- model_name: gemini-pro
litellm_params:
model: gemini/gemini-1.5-pro
api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "List 5 popular cookie recipes."}
],
"topK": 1 # 👈 KEY CHANGE
}
'
Validate Schema
To validate the response_schema, set enforce_validation: true.
- SDK
- PROXY
from litellm import completion, JSONSchemaValidationError
try:
completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format={
"type": "json_object",
"response_schema": response_schema,
"enforce_validation": true # 👈 KEY CHANGE
}
)
except JSONSchemaValidationError as e:
print("Raw Response: {}".format(e.raw_response))
raise e
- Add model to config.yaml
model_list:
- model_name: gemini-pro
litellm_params:
model: gemini/gemini-1.5-pro
api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "List 5 popular cookie recipes."}
],
"response_format": {"type": "json_object", "response_schema": {
"type": "array",
"items": {
"type": "object",
"properties": {
"recipe_name": {
"type": "string",
},
},
"required": ["recipe_name"],
},
},
"enforce_validation": true
}
}
'
Specifying Safety Settings​
In certain use-cases you may need to make calls to the models and pass safety settings different from the defaults. To do so, simple pass the safety_settings argument to completion or acompletion. For example:
response = completion(
model="gemini/gemini-pro",
messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}],
safety_settings=[
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE",
},
]
)
Tool Calling​
from litellm import completion
import os
# set env
os.environ["GEMINI_API_KEY"] = ".."
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
response = completion(
model="gemini/gemini-1.5-flash",
messages=messages,
tools=tools,
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)
Google Search Tool​
- SDK
- PROXY
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)
print(response)
- Setup config.yaml
model_list:
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash",
"messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
"tools": [{"googleSearch": {}}]
}
'
URL Context​
- SDK
- PROXY
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
# 👇 ADD URL CONTEXT
tools = [{"urlContext": {}}]
response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "Summarize this document: https://ai.google.dev/gemini-api/docs/models"}],
tools=tools,
)
print(response)
# Access URL context metadata
url_context_metadata = response.model_extra['vertex_ai_url_context_metadata']
urlMetadata = url_context_metadata[0]['urlMetadata'][0]
print(f"Retrieved URL: {urlMetadata['retrievedUrl']}")
print(f"Retrieval Status: {urlMetadata['urlRetrievalStatus']}")
- Setup config.yaml
model_list:
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-d '{
"model": "gemini-2.0-flash",
"messages": [{"role": "user", "content": "Summarize this document: https://ai.google.dev/gemini-api/docs/models"}],
"tools": [{"urlContext": {}}]
}'
Google Search Retrieval​
- SDK
- PROXY
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)
print(response)
- Setup config.yaml
model_list:
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash",
"messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
"tools": [{"googleSearch": {}}]
}
'
Code Execution Tool​
- SDK
- PROXY
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"codeExecution": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)
print(response)
- Setup config.yaml
model_list:
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash",
"messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
"tools": [{"codeExecution": {}}]
}
'
Thought Signatures​
Thought signatures are encrypted representations of the model's internal reasoning process for a given turn in a conversation. By passing thought signatures back to the model in subsequent requests, you provide it with the context of its previous thoughts, allowing it to build upon its reasoning and maintain a coherent line of inquiry.
Thought signatures are particularly important for multi-turn function calling scenarios where the model needs to maintain context across multiple tool invocations.
How Thought Signatures Work​
- Function calls with signatures: When Gemini returns a function call, it includes a
thought_signaturein the response - Preservation: LiteLLM automatically extracts and stores thought signatures in
provider_specific_fieldsof tool calls - Return in conversation history: When you include the assistant's message with tool calls in subsequent requests, LiteLLM automatically preserves and returns the thought signatures to Gemini
- Parallel function calls: Only the first function call in a parallel set has a thought signature
- Sequential function calls: Each function call in a multi-step sequence has its own signature
Enabling Thought Signatures​
To enable thought signatures, you need to enable thinking/reasoning:
- SDK
- PROXY
from litellm import completion
response = completion(
model="gemini/gemini-2.5-flash",
messages=[{"role": "user", "content": "What's the weather in Tokyo?"}],
tools=[...],
reasoning_effort="low", # Enable thinking to get thought signatures
)
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gemini-2.5-flash",
"messages": [{"role": "user", "content": "What'\''s the weather in Tokyo?"}],
"tools": [...],
"reasoning_effort": "low"
}'
Multi-Turn Function Calling with Thought Signatures​
When building conversation history for multi-turn function calling, you must include the thought signatures from previous responses. LiteLLM handles this automatically when you append the full assistant message to your conversation history.
- OpenAI Client
- cURL
from openai import OpenAI
import json
client = OpenAI(api_key="sk-1234", base_url="http://localhost:4000")
def get_current_temperature(location: str) -> dict:
"""Gets the current weather temperature for a given location."""
return {"temperature": 30, "unit": "celsius"}
def set_thermostat_temperature(temperature: int) -> dict:
"""Sets the thermostat to a desired temperature."""
return {"status": "success"}
get_weather_declaration = {
"name": "get_current_temperature",
"description": "Gets the current weather temperature for a given location.",
"parameters": {
"type": "object",
"properties": {"location": {"type": "string"}},
"required": ["location"],
},
}
set_thermostat_declaration = {
"name": "set_thermostat_temperature",
"description": "Sets the thermostat to a desired temperature.",
"parameters": {
"type": "object",
"properties": {"temperature": {"type": "integer"}},
"required": ["temperature"],
},
}
# Initial request
messages = [
{"role": "user", "content": "If it's too hot or too cold in London, set the thermostat to a comfortable level."}
]
response = client.chat.completions.create(
model="gemini-2.5-flash",
messages=messages,
tools=[get_weather_declaration, set_thermostat_declaration],
reasoning_effort="low"
)
# Append the assistant's message (includes thought signatures automatically)
messages.append(response.choices[0].message)
# Execute tool calls and append results
for tool_call in response.choices[0].message.tool_calls:
if tool_call.function.name == "get_current_temperature":
result = get_current_temperature(**json.loads(tool_call.function.arguments))
messages.append({
"role": "tool",
"content": json.dumps(result),
"tool_call_id": tool_call.id
})
# Second request - thought signatures are automatically preserved
response2 = client.chat.completions.create(
model="gemini-2.5-flash",
messages=messages,
tools=[get_weather_declaration, set_thermostat_declaration],
reasoning_effort="low"
)
print(response2.choices[0].message.content)
# Step 1: Initial request
curl --location 'http://localhost:4000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{
"model": "gemini-2.5-flash",
"messages": [
{
"role": "user",
"content": "If it'\''s too hot or too cold in London, set the thermostat to a comfortable level."
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_current_temperature",
"description": "Gets the current weather temperature for a given location.",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"}
},
"required": ["location"]
}
}
},
{
"type": "function",
"function": {
"name": "set_thermostat_temperature",
"description": "Sets the thermostat to a desired temperature.",
"parameters": {
"type": "object",
"properties": {
"temperature": {"type": "integer"}
},
"required": ["temperature"]
}
}
}
],
"tool_choice": "auto",
"reasoning_effort": "low"
}'
The response will include tool calls with thought signatures in provider_specific_fields:
{
"choices": [{
"message": {
"role": "assistant",
"tool_calls": [{
"id": "call_abc123",
"type": "function",
"function": {
"name": "get_current_temperature",
"arguments": "{\"location\": \"London\"}"
},
"index": 0,
"provider_specific_fields": {
"thought_signature": "CpcHAdHtim9+q4rstcbvQC0ic4x1/vqQlCJWgE+UZ6dTLYGHMMBkF/AxqL5UmP6SY46uYC8t4BTFiXG5zkw6EMJ...=="
}
}]
}
}]
}
# Step 2: Follow-up request with tool response
# Include the assistant message from Step 1 (with thought signatures in provider_specific_fields)
curl --location 'http://localhost:4000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{
"model": "gemini-2.5-flash",
"messages": [
{
"role": "user",
"content": "If it'\''s too hot or too cold in London, set the thermostat to a comfortable level."
},
{
"role": "assistant",
"content": null,
"tool_calls": [
{
"id": "call_c130b9f8c2c042e9b65e39a88245",
"type": "function",
"function": {
"name": "get_current_temperature",
"arguments": "{\"location\": \"London\"}"
},
"index": 0,
"provider_specific_fields": {
"thought_signature": "CpcHAdHtim9+q4rstcbvQC0ic4x1/vqQlCJWgE+UZ6dTLYGHMMBkF/AxqL5UmP6SY46uYC8t4BTFiXG5zkw6EMJ...=="
}
}
]
},
{
"role": "tool",
"content": "{\"temperature\": 30, \"unit\": \"celsius\"}",
"tool_call_id": "call_c130b9f8c2c042e9b65e39a88245"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_current_temperature",
"description": "Gets the current weather temperature for a given location.",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"}
},
"required": ["location"]
}
}
},
{
"type": "function",
"function": {
"name": "set_thermostat_temperature",
"description": "Sets the thermostat to a desired temperature.",
"parameters": {
"type": "object",
"properties": {
"temperature": {"type": "integer"}
},
"required": ["temperature"]
}
}
}
],
"tool_choice": "auto",
"reasoning_effort": "low"
}'
Important Notes​
-
Automatic Handling: LiteLLM automatically extracts thought signatures from Gemini responses and preserves them when you include assistant messages in conversation history. You don't need to manually extract or manage them.
-
Parallel Function Calls: When the model makes parallel function calls, only the first function call will have a thought signature. Subsequent parallel calls won't have signatures.
-
Sequential Function Calls: In multi-step function calling scenarios, each step's first function call will have its own thought signature that must be preserved.
-
Required for Context: Thought signatures are essential for maintaining reasoning context across multi-turn conversations with function calling. Without them, the model may lose context of its previous reasoning.
-
Format: Thought signatures are stored in
provider_specific_fields.thought_signatureof tool calls in the response, and are automatically included when you append the assistant message to your conversation history.
JSON Mode​
- SDK
- PROXY
from litellm import completion
import json
import os
os.environ['GEMINI_API_KEY'] = ""
messages = [
{
"role": "user",
"content": "List 5 popular cookie recipes."
}
]
completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format={"type": "json_object"} # 👈 KEY CHANGE
)
print(json.loads(completion.choices[0].message.content))
- Add model to config.yaml
model_list:
- model_name: gemini-pro
litellm_params:
model: gemini/gemini-1.5-pro
api_key: os.environ/GEMINI_API_KEY
- Start Proxy
$ litellm --config /path/to/config.yaml
- Make Request!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "List 5 popular cookie recipes."}
],
"response_format": {"type": "json_object"}
}
'
Gemini-Pro-Vision
LiteLLM Supports the following image types passed in url
- Images with direct links - https://storage.googleapis.com/github-repo/img/gemini/intro/landmark3.jpg
- Image in local storage - ./localimage.jpeg
Image Resolution Control (Gemini 3+)​
For Gemini 3+ models, LiteLLM supports per-part media resolution control using OpenAI's detail parameter. This allows you to specify different resolution levels for individual images in your request.
Supported detail values:
"low"- Maps tomedia_resolution: "low"(280 tokens for images, 70 tokens per frame for videos)"high"- Maps tomedia_resolution: "high"(1120 tokens for images)"auto"orNone- Model decides optimal resolution (nomedia_resolutionset)
Usage Example:
from litellm import completion
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://example.com/chart.png",
"detail": "high" # High resolution for detailed chart analysis
}
},
{
"type": "text",
"text": "Analyze this chart"
},
{
"type": "image_url",
"image_url": {
"url": "https://example.com/icon.png",
"detail": "low" # Low resolution for simple icon
}
}
]
}
]
response = completion(
model="gemini/gemini-3-pro-preview",
messages=messages,
)
Per-Part Resolution: Each image in your request can have its own detail setting, allowing mixed-resolution requests (e.g., a high-res chart alongside a low-res icon). This feature is only available for Gemini 3+ models.
Sample Usage​
import os
import litellm
from dotenv import load_dotenv
# Load the environment variables from .env file
load_dotenv()
os.environ["GEMINI_API_KEY"] = os.getenv('GEMINI_API_KEY')
prompt = 'Describe the image in a few sentences.'
# Note: You can pass here the URL or Path of image directly.
image_url = 'https://storage.googleapis.com/github-repo/img/gemini/intro/landmark3.jpg'
# Create the messages payload according to the documentation
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {"url": image_url}
}
]
}
]
# Make the API call to Gemini model
response = litellm.completion(
model="gemini/gemini-pro-vision",
messages=messages,
)
# Extract the response content
content = response.get('choices', [{}])[0].get('message', {}).get('content')
# Print the result
print(content)
Usage - PDF / Videos / etc. Files​
Inline Data (e.g. audio stream)​
LiteLLM follows the OpenAI format and accepts sending inline data as an encoded base64 string.
The format to follow is
data:<mime_type>;base64,<encoded_data>
** LITELLM CALL **
import litellm
from pathlib import Path
import base64
import os
os.environ["GEMINI_API_KEY"] = ""
litellm.set_verbose = True # 👈 See Raw call
audio_bytes = Path("speech_vertex.mp3").read_bytes()
encoded_data = base64.b64encode(audio_bytes).decode("utf-8")
print("Audio Bytes = {}".format(audio_bytes))
model = "gemini/gemini-1.5-flash"
response = litellm.completion(
model=model,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Please summarize the audio."},
{
"type": "file",
"file": {
"file_data": "data:audio/mp3;base64,{}".format(encoded_data), # 👈 SET MIME_TYPE + DATA
}
},
],
}
],
)
** Equivalent GOOGLE API CALL **
# Initialize a Gemini model appropriate for your use case.
model = genai.GenerativeModel('models/gemini-1.5-flash')
# Create the prompt.
prompt = "Please summarize the audio."
# Load the samplesmall.mp3 file into a Python Blob object containing the audio
# file's bytes and then pass the prompt and the audio to Gemini.
response = model.generate_content([
prompt,
{
"mime_type": "audio/mp3",
"data": pathlib.Path('samplesmall.mp3').read_bytes()
}
])
# Output Gemini's response to the prompt and the inline audio.
print(response.text)
https:// file​
import litellm
import os
os.environ["GEMINI_API_KEY"] = ""
litellm.set_verbose = True # 👈 See Raw call
model = "gemini/gemini-1.5-flash"
response = litellm.completion(
model=model,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Please summarize the file."},
{
"type": "file",
"file": {
"file_id": "https://storage...", # 👈 SET THE IMG URL
"format": "application/pdf" # OPTIONAL
}
},
],
}
],
)
gs:// file​
import litellm
import os
os.environ["GEMINI_API_KEY"] = ""
litellm.set_verbose = True # 👈 See Raw call
model = "gemini/gemini-1.5-flash"
response = litellm.completion(
model=model,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Please summarize the file."},
{
"type": "file",
"file": {
"file_id": "gs://storage...", # 👈 SET THE IMG URL
"format": "application/pdf" # OPTIONAL
}
},
],
}
],
)
Chat Models​
We support ALL Gemini models, just set model=gemini/<any-model-on-gemini> as a prefix when sending litellm requests
| Model Name | Function Call | Required OS Variables |
|---|---|---|
| gemini-pro | completion(model='gemini/gemini-pro', messages) | os.environ['GEMINI_API_KEY'] |
| gemini-1.5-pro-latest | completion(model='gemini/gemini-1.5-pro-latest', messages) | os.environ['GEMINI_API_KEY'] |
| gemini-2.0-flash | completion(model='gemini/gemini-2.0-flash', messages) | os.environ['GEMINI_API_KEY'] |
| gemini-2.0-flash-exp | completion(model='gemini/gemini-2.0-flash-exp', messages) | os.environ['GEMINI_API_KEY'] |
| gemini-2.0-flash-lite-preview-02-05 | completion(model='gemini/gemini-2.0-flash-lite-preview-02-05', messages) | os.environ['GEMINI_API_KEY'] |
| gemini-2.5-flash-preview-09-2025 | completion(model='gemini/gemini-2.5-flash-preview-09-2025', messages) | os.environ['GEMINI_API_KEY'] |
| gemini-2.5-flash-lite-preview-09-2025 | completion(model='gemini/gemini-2.5-flash-lite-preview-09-2025', messages) | os.environ['GEMINI_API_KEY'] |
| gemini-flash-latest | completion(model='gemini/gemini-flash-latest', messages) | os.environ['GEMINI_API_KEY'] |
| gemini-flash-lite-latest | completion(model='gemini/gemini-flash-lite-latest', messages) | os.environ['GEMINI_API_KEY'] |
Context Caching​
Use Google AI Studio context caching is supported by
{
{
"role": "system",
"content": ...,
"cache_control": {"type": "ephemeral"} # 👈 KEY CHANGE
},
...
}
in your message content block.
Custom TTL Support​
You can now specify a custom Time-To-Live (TTL) for your cached content using the ttl parameter:
{
{
"role": "system",
"content": ...,
"cache_control": {
"type": "ephemeral",
"ttl": "3600s" # 👈 Cache for 1 hour
}
},
...
}
TTL Format Requirements:
- Must be a string ending with 's' for seconds
- Must contain a positive number (can be decimal)
- Examples:
"3600s"(1 hour),"7200s"(2 hours),"1800s"(30 minutes),"1.5s"(1.5 seconds)
TTL Behavior:
- If multiple cached messages have different TTLs, the first valid TTL encountered will be used
- Invalid TTL formats are ignored and the cache will use Google's default expiration time
- If no TTL is specified, Google's default cache expiration (approximately 1 hour) applies
Architecture Diagram​
Notes:
-
Gemini Context Caching only allows 1 block of continuous messages to be cached.
-
If multiple non-continuous blocks contain
cache_control- the first continuous block will be used. (sent to/cachedContentin the Gemini format) -
The raw request to Gemini's
/generateContentendpoint looks like this:
curl -X POST "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-001:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
"contents": [
{
"parts":[{
"text": "Please summarize this transcript"
}],
"role": "user"
},
],
"cachedContent": "'$CACHE_NAME'"
}'
Example Usage​
- SDK
- SDK with Custom TTL
- PROXY
from litellm import completion
for _ in range(2):
resp = completion(
model="gemini/gemini-1.5-pro",
messages=[
# System Message
{
"role": "system",
"content": [
{
"type": "text",
"text": "Here is the full text of a complex legal agreement" * 4000,
"cache_control": {"type": "ephemeral"}, # 👈 KEY CHANGE
}
],
},
# marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
{
"role": "user",
"content": [
{
"type": "text",
"text": "What are the key terms and conditions in this agreement?",
"cache_control": {"type": "ephemeral"},
}
],
}]
)
print(resp.usage) # 👈 2nd usage block will be less, since cached tokens used
from litellm import completion
# Cache for 2 hours (7200 seconds)
resp = completion(
model="gemini/gemini-1.5-pro",
messages=[
{
"role": "system",
"content": [
{
"type": "text",
"text": "Here is the full text of a complex legal agreement" * 4000,
"cache_control": {
"type": "ephemeral",
"ttl": "7200s" # 👈 Cache for 2 hours
},
}
],
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What are the key terms and conditions in this agreement?",
"cache_control": {
"type": "ephemeral",
"ttl": "3600s" # 👈 This TTL will be ignored (first one is used)
},
}
],
}
]
)
print(resp.usage)
- Setup config.yaml
model_list:
- model_name: gemini-1.5-pro
litellm_params:
model: gemini/gemini-1.5-pro
api_key: os.environ/GEMINI_API_KEY
- Start proxy
litellm --config /path/to/config.yaml
- Test it!
See Langchain, OpenAI JS, Llamaindex, etc. examples
- Curl
- Curl with Custom TTL
- OpenAI Python SDK
- OpenAI Python SDK with TTL
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "gemini-1.5-pro",
"messages": [
# System Message
{
"role": "system",
"content": [
{
"type": "text",
"text": "Here is the full text of a complex legal agreement" * 4000,
"cache_control": {"type": "ephemeral"}, # 👈 KEY CHANGE
}
],
},
# marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
{
"role": "user",
"content": [
{
"type": "text",
"text": "What are the key terms and conditions in this agreement?",
"cache_control": {"type": "ephemeral"},
}
],
}],
}'
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "gemini-1.5-pro",
"messages": [
{
"role": "system",
"content": [
{
"type": "text",
"text": "Here is the full text of a complex legal agreement" * 4000,
"cache_control": {
"type": "ephemeral",
"ttl": "7200s"
}
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What are the key terms and conditions in this agreement?",
"cache_control": {
"type": "ephemeral",
"ttl": "3600s"
}
}
]
}
]
}'
import openai
client = openai.AsyncOpenAI(
api_key="anything", # litellm proxy api key
base_url="http://0.0.0.0:4000" # litellm proxy base url
)
response = await client.chat.completions.create(
model="gemini-1.5-pro",
messages=[
{
"role": "system",
"content": [
{
"type": "text",
"text": "Here is the full text of a complex legal agreement" * 4000,
"cache_control": {"type": "ephemeral"}, # 👈 KEY CHANGE
}
],
},
{
"role": "user",
"content": "what are the key terms and conditions in this agreement?",
},
]
)
import openai
client = openai.AsyncOpenAI(
api_key="anything", # litellm proxy api key
base_url="http://0.0.0.0:4000" # litellm proxy base url
)
response = await client.chat.completions.create(
model="gemini-1.5-pro",
messages=[
{
"role": "system",
"content": [
{
"type": "text",
"text": "Here is the full text of a complex legal agreement" * 4000,
"cache_control": {
"type": "ephemeral",
"ttl": "7200s" # Cache for 2 hours
}
}
],
},
{
"role": "user",
"content": "what are the key terms and conditions in this agreement?",
},
]
)
Image Generation​
- SDK
- PROXY
from litellm import completion
response = completion(
model="gemini/gemini-2.0-flash-exp-image-generation",
messages=[{"role": "user", "content": "Generate an image of a cat"}],
modalities=["image", "text"],
)
assert response.choices[0].message.content is not None # ".."
- Setup config.yaml
model_list:
- model_name: gemini-2.0-flash-exp-image-generation
litellm_params:
model: gemini/gemini-2.0-flash-exp-image-generation
api_key: os.environ/GEMINI_API_KEY
- Start proxy
litellm --config /path/to/config.yaml
- Test it!
curl -L -X POST 'http://localhost:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash-exp-image-generation",
"messages": [{"role": "user", "content": "Generate an image of a cat"}],
"modalities": ["image", "text"]
}'