Skip to main content

Gemini - Google AI Studio

PropertyDetails
DescriptionGoogle AI Studio is a fully-managed AI development platform for building and using generative AI.
Provider Route on LiteLLMgemini/
Provider DocGoogle AI Studio ↗
API Endpoint for Providerhttps://generativelanguage.googleapis.com
Supported OpenAI Endpoints/chat/completions, /embeddings, /completions, /videos, /images/edits
Pass-through EndpointSupported

API Keys​

import os
os.environ["GEMINI_API_KEY"] = "your-api-key"

Sample Usage​

from litellm import completion
import os

os.environ['GEMINI_API_KEY'] = ""
response = completion(
model="gemini/gemini-pro",
messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}]
)

Supported OpenAI Params​

  • temperature
  • top_p
  • max_tokens
  • max_completion_tokens
  • stream
  • tools
  • tool_choice
  • functions
  • response_format
  • n
  • stop
  • logprobs
  • frequency_penalty
  • modalities
  • reasoning_content
  • audio (for TTS models only)

Anthropic Params

  • thinking (used to set max budget tokens across anthropic/gemini models)

See Updated List

Usage - Thinking / reasoning_content​

LiteLLM translates OpenAI's reasoning_effort to Gemini's thinking parameter. Code

Cost Optimization: Use reasoning_effort="none" (OpenAI standard) for significant cost savings - up to 96% cheaper. Google's docs

info

Note: Reasoning cannot be turned off on Gemini 2.5 Pro models.

Gemini 3 Models

For Gemini 3+ models (e.g., gemini-3-pro-preview), LiteLLM automatically maps reasoning_effort to the new thinking_level parameter instead of thinking_budget. The thinking_level parameter uses "low" or "high" values for better control over reasoning depth.

Mapping for Gemini 2.5 and earlier models

reasoning_effortthinkingNotes
"none""budget_tokens": 0, "includeThoughts": false💰 Recommended for cost optimization - OpenAI-compatible, always 0
"disable""budget_tokens": DEFAULT (0), "includeThoughts": falseLiteLLM-specific, configurable via env var
"low""budget_tokens": 1024
"medium""budget_tokens": 2048
"high""budget_tokens": 4096

Mapping for Gemini 3+ models

reasoning_effortthinking_levelNotes
"minimal""low"Minimizes latency and cost
"low""low"Best for simple instruction following or chat
"medium""high"Maps to high (medium not yet available)
"high""high"Maximizes reasoning depth
"disable""low"Cannot fully disable thinking in Gemini 3
"none""low"Cannot fully disable thinking in Gemini 3
from litellm import completion

# Cost-optimized: Use reasoning_effort="none" for best pricing
resp = completion(
model="gemini/gemini-2.0-flash-thinking-exp-01-21",
messages=[{"role": "user", "content": "What is the capital of France?"}],
reasoning_effort="none", # Up to 96% cheaper!
)

# Or use other levels: "low", "medium", "high"
resp = completion(
model="gemini/gemini-2.5-flash-preview-04-17",
messages=[{"role": "user", "content": "What is the capital of France?"}],
reasoning_effort="low",
)

Gemini 3+ Models - thinking_level Parameter​

For Gemini 3+ models (e.g., gemini-3-pro-preview), you can use the new thinking_level parameter directly:

from litellm import completion

# Use thinking_level for Gemini 3 models
resp = completion(
model="gemini/gemini-3-pro-preview",
messages=[{"role": "user", "content": "Solve this complex math problem step by step."}],
reasoning_effort="high", # Options: "low" or "high"
)

# Low thinking level for faster, simpler tasks
resp = completion(
model="gemini/gemini-3-pro-preview",
messages=[{"role": "user", "content": "What is the weather today?"}],
reasoning_effort="low", # Minimizes latency and cost
)
warning

Temperature Recommendation for Gemini 3 Models

For Gemini 3 models, LiteLLM defaults temperature to 1.0 and strongly recommends keeping it at this default. Setting temperature < 1.0 can cause:

  • Infinite loops
  • Degraded reasoning performance
  • Failure on complex tasks

LiteLLM will automatically set temperature=1.0 if not specified for Gemini 3+ models.

Expected Response

ModelResponse(
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
created=1740470510,
model='claude-3-7-sonnet-20250219',
object='chat.completion',
system_fingerprint=None,
choices=[
Choices(
finish_reason='stop',
index=0,
message=Message(
content="The capital of France is Paris.",
role='assistant',
tool_calls=None,
function_call=None,
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
),
)
],
usage=Usage(
completion_tokens=68,
prompt_tokens=42,
total_tokens=110,
completion_tokens_details=None,
prompt_tokens_details=PromptTokensDetailsWrapper(
audio_tokens=None,
cached_tokens=0,
text_tokens=None,
image_tokens=None
),
cache_creation_input_tokens=0,
cache_read_input_tokens=0
)
)

Pass thinking to Gemini models​

You can also pass the thinking parameter to Gemini models.

This is translated to Gemini's thinkingConfig parameter.

response = litellm.completion(
model="gemini/gemini-2.5-flash-preview-04-17",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
)

Text-to-Speech (TTS) Audio Output​

info

LiteLLM supports Gemini TTS models that can generate audio responses using the OpenAI-compatible audio parameter format.

Supported Models​

LiteLLM supports Gemini TTS models with audio capabilities (e.g. gemini-2.5-flash-preview-tts and gemini-2.5-pro-preview-tts). For the complete list of available TTS models and voices, see the official Gemini TTS documentation.

Limitations​

warning

Important Limitations:

  • Gemini TTS models only support the pcm16 audio format
  • Streaming support has not been added to TTS models yet
  • The modalities parameter must be set to ['audio'] for TTS requests

Quick Start​

from litellm import completion
import os

os.environ['GEMINI_API_KEY'] = "your-api-key"

response = completion(
model="gemini/gemini-2.5-flash-preview-tts",
messages=[{"role": "user", "content": "Say hello in a friendly voice"}],
modalities=["audio"], # Required for TTS models
audio={
"voice": "Kore",
"format": "pcm16" # Required: must be "pcm16"
}
)

print(response)

Advanced Usage​

You can combine TTS with other Gemini features:

response = completion(
model="gemini/gemini-2.5-pro-preview-tts",
messages=[
{"role": "system", "content": "You are a helpful assistant that speaks clearly."},
{"role": "user", "content": "Explain quantum computing in simple terms"}
],
modalities=["audio"],
audio={
"voice": "Charon",
"format": "pcm16"
},
temperature=0.7,
max_tokens=150
)

For more information about Gemini's TTS capabilities and available voices, see the official Gemini TTS documentation.

Passing Gemini Specific Params​

Response schema​

LiteLLM supports sending response_schema as a param for Gemini-1.5-Pro on Google AI Studio.

Response Schema

from litellm import completion 
import json
import os

os.environ['GEMINI_API_KEY'] = ""

messages = [
{
"role": "user",
"content": "List 5 popular cookie recipes."
}
]

response_schema = {
"type": "array",
"items": {
"type": "object",
"properties": {
"recipe_name": {
"type": "string",
},
},
"required": ["recipe_name"],
},
}


completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format={"type": "json_object", "response_schema": response_schema} # 👈 KEY CHANGE
)

print(json.loads(completion.choices[0].message.content))

Validate Schema

To validate the response_schema, set enforce_validation: true.

from litellm import completion, JSONSchemaValidationError
try:
completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format={
"type": "json_object",
"response_schema": response_schema,
"enforce_validation": true # 👈 KEY CHANGE
}
)
except JSONSchemaValidationError as e:
print("Raw Response: {}".format(e.raw_response))
raise e

LiteLLM will validate the response against the schema, and raise a JSONSchemaValidationError if the response does not match the schema.

JSONSchemaValidationError inherits from openai.APIError

Access the raw response with e.raw_response

GenerationConfig Params​

To pass additional GenerationConfig params - e.g. topK, just pass it in the request body of the call, and LiteLLM will pass it straight through as a key-value pair in the request body.

See Gemini GenerationConfigParams

from litellm import completion 
import json
import os

os.environ['GEMINI_API_KEY'] = ""

messages = [
{
"role": "user",
"content": "List 5 popular cookie recipes."
}
]

completion(
model="gemini/gemini-1.5-pro",
messages=messages,
topK=1 # 👈 KEY CHANGE
)

print(json.loads(completion.choices[0].message.content))

Validate Schema

To validate the response_schema, set enforce_validation: true.

from litellm import completion, JSONSchemaValidationError
try:
completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format={
"type": "json_object",
"response_schema": response_schema,
"enforce_validation": true # 👈 KEY CHANGE
}
)
except JSONSchemaValidationError as e:
print("Raw Response: {}".format(e.raw_response))
raise e

Specifying Safety Settings​

In certain use-cases you may need to make calls to the models and pass safety settings different from the defaults. To do so, simple pass the safety_settings argument to completion or acompletion. For example:

response = completion(
model="gemini/gemini-pro",
messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}],
safety_settings=[
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE",
},
]
)

Tool Calling​

from litellm import completion
import os
# set env
os.environ["GEMINI_API_KEY"] = ".."

tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]

response = completion(
model="gemini/gemini-1.5-flash",
messages=messages,
tools=tools,
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)


Google Search Tool​

from litellm import completion
import os

os.environ["GEMINI_API_KEY"] = ".."

tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH

response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)

print(response)

URL Context​

from litellm import completion
import os

os.environ["GEMINI_API_KEY"] = ".."

# 👇 ADD URL CONTEXT
tools = [{"urlContext": {}}]

response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "Summarize this document: https://ai.google.dev/gemini-api/docs/models"}],
tools=tools,
)

print(response)

# Access URL context metadata
url_context_metadata = response.model_extra['vertex_ai_url_context_metadata']
urlMetadata = url_context_metadata[0]['urlMetadata'][0]
print(f"Retrieved URL: {urlMetadata['retrievedUrl']}")
print(f"Retrieval Status: {urlMetadata['urlRetrievalStatus']}")

Google Search Retrieval​

from litellm import completion
import os

os.environ["GEMINI_API_KEY"] = ".."

tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH

response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)

print(response)

Code Execution Tool​

from litellm import completion
import os

os.environ["GEMINI_API_KEY"] = ".."

tools = [{"codeExecution": {}}] # 👈 ADD GOOGLE SEARCH

response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)

print(response)

Thought Signatures​

Thought signatures are encrypted representations of the model's internal reasoning process for a given turn in a conversation. By passing thought signatures back to the model in subsequent requests, you provide it with the context of its previous thoughts, allowing it to build upon its reasoning and maintain a coherent line of inquiry.

Thought signatures are particularly important for multi-turn function calling scenarios where the model needs to maintain context across multiple tool invocations.

How Thought Signatures Work​

  • Function calls with signatures: When Gemini returns a function call, it includes a thought_signature in the response
  • Preservation: LiteLLM automatically extracts and stores thought signatures in provider_specific_fields of tool calls
  • Return in conversation history: When you include the assistant's message with tool calls in subsequent requests, LiteLLM automatically preserves and returns the thought signatures to Gemini
  • Parallel function calls: Only the first function call in a parallel set has a thought signature
  • Sequential function calls: Each function call in a multi-step sequence has its own signature

Enabling Thought Signatures​

To enable thought signatures, you need to enable thinking/reasoning:

from litellm import completion

response = completion(
model="gemini/gemini-2.5-flash",
messages=[{"role": "user", "content": "What's the weather in Tokyo?"}],
tools=[...],
reasoning_effort="low", # Enable thinking to get thought signatures
)

Multi-Turn Function Calling with Thought Signatures​

When building conversation history for multi-turn function calling, you must include the thought signatures from previous responses. LiteLLM handles this automatically when you append the full assistant message to your conversation history.

from openai import OpenAI
import json

client = OpenAI(api_key="sk-1234", base_url="http://localhost:4000")

def get_current_temperature(location: str) -> dict:
"""Gets the current weather temperature for a given location."""
return {"temperature": 30, "unit": "celsius"}

def set_thermostat_temperature(temperature: int) -> dict:
"""Sets the thermostat to a desired temperature."""
return {"status": "success"}

get_weather_declaration = {
"name": "get_current_temperature",
"description": "Gets the current weather temperature for a given location.",
"parameters": {
"type": "object",
"properties": {"location": {"type": "string"}},
"required": ["location"],
},
}

set_thermostat_declaration = {
"name": "set_thermostat_temperature",
"description": "Sets the thermostat to a desired temperature.",
"parameters": {
"type": "object",
"properties": {"temperature": {"type": "integer"}},
"required": ["temperature"],
},
}

# Initial request
messages = [
{"role": "user", "content": "If it's too hot or too cold in London, set the thermostat to a comfortable level."}
]

response = client.chat.completions.create(
model="gemini-2.5-flash",
messages=messages,
tools=[get_weather_declaration, set_thermostat_declaration],
reasoning_effort="low"
)

# Append the assistant's message (includes thought signatures automatically)
messages.append(response.choices[0].message)

# Execute tool calls and append results
for tool_call in response.choices[0].message.tool_calls:
if tool_call.function.name == "get_current_temperature":
result = get_current_temperature(**json.loads(tool_call.function.arguments))
messages.append({
"role": "tool",
"content": json.dumps(result),
"tool_call_id": tool_call.id
})

# Second request - thought signatures are automatically preserved
response2 = client.chat.completions.create(
model="gemini-2.5-flash",
messages=messages,
tools=[get_weather_declaration, set_thermostat_declaration],
reasoning_effort="low"
)

print(response2.choices[0].message.content)

Important Notes​

  1. Automatic Handling: LiteLLM automatically extracts thought signatures from Gemini responses and preserves them when you include assistant messages in conversation history. You don't need to manually extract or manage them.

  2. Parallel Function Calls: When the model makes parallel function calls, only the first function call will have a thought signature. Subsequent parallel calls won't have signatures.

  3. Sequential Function Calls: In multi-step function calling scenarios, each step's first function call will have its own thought signature that must be preserved.

  4. Required for Context: Thought signatures are essential for maintaining reasoning context across multi-turn conversations with function calling. Without them, the model may lose context of its previous reasoning.

  5. Format: Thought signatures are stored in provider_specific_fields.thought_signature of tool calls in the response, and are automatically included when you append the assistant message to your conversation history.

JSON Mode​

from litellm import completion 
import json
import os

os.environ['GEMINI_API_KEY'] = ""

messages = [
{
"role": "user",
"content": "List 5 popular cookie recipes."
}
]



completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format={"type": "json_object"} # 👈 KEY CHANGE
)

print(json.loads(completion.choices[0].message.content))

Gemini-Pro-Vision

LiteLLM Supports the following image types passed in url

Image Resolution Control (Gemini 3+)​

For Gemini 3+ models, LiteLLM supports per-part media resolution control using OpenAI's detail parameter. This allows you to specify different resolution levels for individual images in your request.

Supported detail values:

  • "low" - Maps to media_resolution: "low" (280 tokens for images, 70 tokens per frame for videos)
  • "high" - Maps to media_resolution: "high" (1120 tokens for images)
  • "auto" or None - Model decides optimal resolution (no media_resolution set)

Usage Example:

from litellm import completion

messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://example.com/chart.png",
"detail": "high" # High resolution for detailed chart analysis
}
},
{
"type": "text",
"text": "Analyze this chart"
},
{
"type": "image_url",
"image_url": {
"url": "https://example.com/icon.png",
"detail": "low" # Low resolution for simple icon
}
}
]
}
]

response = completion(
model="gemini/gemini-3-pro-preview",
messages=messages,
)
info

Per-Part Resolution: Each image in your request can have its own detail setting, allowing mixed-resolution requests (e.g., a high-res chart alongside a low-res icon). This feature is only available for Gemini 3+ models.

Sample Usage​

import os
import litellm
from dotenv import load_dotenv

# Load the environment variables from .env file
load_dotenv()
os.environ["GEMINI_API_KEY"] = os.getenv('GEMINI_API_KEY')

prompt = 'Describe the image in a few sentences.'
# Note: You can pass here the URL or Path of image directly.
image_url = 'https://storage.googleapis.com/github-repo/img/gemini/intro/landmark3.jpg'

# Create the messages payload according to the documentation
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {"url": image_url}
}
]
}
]

# Make the API call to Gemini model
response = litellm.completion(
model="gemini/gemini-pro-vision",
messages=messages,
)

# Extract the response content
content = response.get('choices', [{}])[0].get('message', {}).get('content')

# Print the result
print(content)

Usage - PDF / Videos / etc. Files​

Inline Data (e.g. audio stream)​

LiteLLM follows the OpenAI format and accepts sending inline data as an encoded base64 string.

The format to follow is

data:<mime_type>;base64,<encoded_data>

** LITELLM CALL **

import litellm
from pathlib import Path
import base64
import os

os.environ["GEMINI_API_KEY"] = ""

litellm.set_verbose = True # 👈 See Raw call

audio_bytes = Path("speech_vertex.mp3").read_bytes()
encoded_data = base64.b64encode(audio_bytes).decode("utf-8")
print("Audio Bytes = {}".format(audio_bytes))
model = "gemini/gemini-1.5-flash"
response = litellm.completion(
model=model,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Please summarize the audio."},
{
"type": "file",
"file": {
"file_data": "data:audio/mp3;base64,{}".format(encoded_data), # 👈 SET MIME_TYPE + DATA
}
},
],
}
],
)

** Equivalent GOOGLE API CALL **

# Initialize a Gemini model appropriate for your use case.
model = genai.GenerativeModel('models/gemini-1.5-flash')

# Create the prompt.
prompt = "Please summarize the audio."

# Load the samplesmall.mp3 file into a Python Blob object containing the audio
# file's bytes and then pass the prompt and the audio to Gemini.
response = model.generate_content([
prompt,
{
"mime_type": "audio/mp3",
"data": pathlib.Path('samplesmall.mp3').read_bytes()
}
])

# Output Gemini's response to the prompt and the inline audio.
print(response.text)

https:// file​

import litellm
import os

os.environ["GEMINI_API_KEY"] = ""

litellm.set_verbose = True # 👈 See Raw call

model = "gemini/gemini-1.5-flash"
response = litellm.completion(
model=model,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Please summarize the file."},
{
"type": "file",
"file": {
"file_id": "https://storage...", # 👈 SET THE IMG URL
"format": "application/pdf" # OPTIONAL
}
},
],
}
],
)

gs:// file​

import litellm
import os

os.environ["GEMINI_API_KEY"] = ""

litellm.set_verbose = True # 👈 See Raw call

model = "gemini/gemini-1.5-flash"
response = litellm.completion(
model=model,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Please summarize the file."},
{
"type": "file",
"file": {
"file_id": "gs://storage...", # 👈 SET THE IMG URL
"format": "application/pdf" # OPTIONAL
}
},
],
}
],
)

Chat Models​

tip

We support ALL Gemini models, just set model=gemini/<any-model-on-gemini> as a prefix when sending litellm requests

Model NameFunction CallRequired OS Variables
gemini-procompletion(model='gemini/gemini-pro', messages)os.environ['GEMINI_API_KEY']
gemini-1.5-pro-latestcompletion(model='gemini/gemini-1.5-pro-latest', messages)os.environ['GEMINI_API_KEY']
gemini-2.0-flashcompletion(model='gemini/gemini-2.0-flash', messages)os.environ['GEMINI_API_KEY']
gemini-2.0-flash-expcompletion(model='gemini/gemini-2.0-flash-exp', messages)os.environ['GEMINI_API_KEY']
gemini-2.0-flash-lite-preview-02-05completion(model='gemini/gemini-2.0-flash-lite-preview-02-05', messages)os.environ['GEMINI_API_KEY']
gemini-2.5-flash-preview-09-2025completion(model='gemini/gemini-2.5-flash-preview-09-2025', messages)os.environ['GEMINI_API_KEY']
gemini-2.5-flash-lite-preview-09-2025completion(model='gemini/gemini-2.5-flash-lite-preview-09-2025', messages)os.environ['GEMINI_API_KEY']
gemini-flash-latestcompletion(model='gemini/gemini-flash-latest', messages)os.environ['GEMINI_API_KEY']
gemini-flash-lite-latestcompletion(model='gemini/gemini-flash-lite-latest', messages)os.environ['GEMINI_API_KEY']

Context Caching​

Use Google AI Studio context caching is supported by

{
{
"role": "system",
"content": ...,
"cache_control": {"type": "ephemeral"} # 👈 KEY CHANGE
},
...
}

in your message content block.

Custom TTL Support​

You can now specify a custom Time-To-Live (TTL) for your cached content using the ttl parameter:

{
{
"role": "system",
"content": ...,
"cache_control": {
"type": "ephemeral",
"ttl": "3600s" # 👈 Cache for 1 hour
}
},
...
}

TTL Format Requirements:

  • Must be a string ending with 's' for seconds
  • Must contain a positive number (can be decimal)
  • Examples: "3600s" (1 hour), "7200s" (2 hours), "1800s" (30 minutes), "1.5s" (1.5 seconds)

TTL Behavior:

  • If multiple cached messages have different TTLs, the first valid TTL encountered will be used
  • Invalid TTL formats are ignored and the cache will use Google's default expiration time
  • If no TTL is specified, Google's default cache expiration (approximately 1 hour) applies

Architecture Diagram​

Notes:

  • Relevant code

  • Gemini Context Caching only allows 1 block of continuous messages to be cached.

  • If multiple non-continuous blocks contain cache_control - the first continuous block will be used. (sent to /cachedContent in the Gemini format)

  • The raw request to Gemini's /generateContent endpoint looks like this:

curl -X POST "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-001:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
"contents": [
{
"parts":[{
"text": "Please summarize this transcript"
}],
"role": "user"
},
],
"cachedContent": "'$CACHE_NAME'"
}'

Example Usage​

from litellm import completion 

for _ in range(2):
resp = completion(
model="gemini/gemini-1.5-pro",
messages=[
# System Message
{
"role": "system",
"content": [
{
"type": "text",
"text": "Here is the full text of a complex legal agreement" * 4000,
"cache_control": {"type": "ephemeral"}, # 👈 KEY CHANGE
}
],
},
# marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
{
"role": "user",
"content": [
{
"type": "text",
"text": "What are the key terms and conditions in this agreement?",
"cache_control": {"type": "ephemeral"},
}
],
}]
)

print(resp.usage) # 👈 2nd usage block will be less, since cached tokens used

Image Generation​

from litellm import completion 

response = completion(
model="gemini/gemini-2.0-flash-exp-image-generation",
messages=[{"role": "user", "content": "Generate an image of a cat"}],
modalities=["image", "text"],
)
assert response.choices[0].message.content is not None # ".."